Как пользоваться таблицей муавра лапласа


Локальная и интегральная теоремы Лапласа

Данная статья является естественным продолжением урока о независимых испытаниях . на котором мы познакомились с формулой Бернулли и отработали типовые примеры по теме. Локальная и интегральная теоремы Лапласа (Муавра-Лапласа) решают аналогичную задачу с тем отличием, что они применимы к достаточно большому количеству независимых испытаний. Не нужно тушеваться слов «локальная», «интегральная», «теоремы» – материал осваивается с той же лёгкостью, с какой Лаплас потрепал кучерявую голову Наполеона. Поэтому безо всяких комплексов и предварительных замечаний сразу же рассмотрим демонстрационный пример:

Монета подбрасывается 400 раз. Найти вероятность того, что орёл выпадет 200 раз.

По характерным признакам здесь следует применить формулу Бернулли . Вспомним смысл этих букв:

– вероятность того, что в независимых испытаниях случайное событие наступит ровно раз;
биномиальный коэффициент ;
– вероятность появления события в каждом испытании;
– вероятность противоположного события.

Применительно к нашей задаче:
– общее количество испытаний;
– количество бросков, в которых должен выпасть орёл;
– вероятность выпадения орла в каждом броске;
– вероятность выпадения решки.

Таким образом, вероятность того, что в результате 400 бросков монеты орёл выпадет ровно 200 раз: …Стоп, что делать дальше? Микрокалькулятор (по крайне мере, мой) не справился с 400-й степенью и капитулировал перед факториалами . А считать через произведение что-то не захотелось =) Воспользуемся стандартной функцией Экселя . которая сумела обработать монстра: .

Заостряю ваше внимание, что получено точное значение и такое решение вроде бы идеально. На первый взгляд. Перечислим веские контраргументы:

– во-первых, программного обеспечения может не оказаться под рукой;
– и во-вторых, решение будет смотреться нестандартно (с немалой вероятностью придётся перерешивать) ;

Поэтому, уважаемые читатели, в ближайшем будущем нас ждёт:

Локальная теорема Лапласа

Если вероятность появления случайного события в каждом испытании постоянна, то вероятность того, что в испытаниях событие наступит ровно раз, приближённо равна:
. где .

При этом, чем больше , тем рассчитанная вероятность будет лучше приближать точное значению , полученное (хотя бы гипотетически) по формуле Бернулли. Рекомендуемое минимальное количество испытаний – примерно 50-100, в противном случае результат может оказаться далёким от истины. Кроме того, локальная теорема Лапласа работает тем лучше, чем вероятность ближе к 0,5, и наоборот – даёт существенную погрешность при значениях , близких к нулю либо единице. По этой причине ещё одним критерием эффективного использования формулы является выполнение неравенства () .

Так, например, если , то и применение теоремы Лапласа для 50 испытаний оправдано. Но если и , то и приближение (к точному значению ) будет плохим.

О том, почему и об особенной функции мы поговорим на уроке о нормальном распределении вероятностей. а пока нам потребуется формально-вычислительная сторона вопроса. В частности, важным фактом является чётность этой функции: .

Оформим официальные отношения с нашим примером:

Монета подбрасывается 400 раз. Найти вероятность того, что орёл выпадет ровно:

а) 200 раз;
б) 225 раз.

С чего начать решение. Сначала распишем известные величины, чтобы они были перед глазами:

– общее количество независимых испытаний;
– вероятность выпадения орла в каждом броске;
– вероятность выпадения решки.

а) Найдём вероятность того, что в серии из 400 бросков орёл выпадет ровно раз. Ввиду большого количества испытаний используем локальную теорему Лапласа: , где .

На первом шаге вычислим требуемое значение аргумента:

Далее находим соответствующее значение функции: . Это можно сделать несколькими способами. В первую очередь, конечно же, напрашиваются непосредственные вычисления:

Округление проводят, как правило, до 4 знаков после запятой.

Недостаток прямого вычисления состоит в том, что экспоненту переваривает далеко не каждый микрокалькулятор, кроме того, расчёты не особо приятны и отнимают время. Зачем так мучиться? Используйте калькулятор по терверу(пункт 4) и получайте значения моментально!

Кроме того, существует таблица значений функции . которая есть практически в любой книге по теории вероятностей, в частности, в учебном пособии В.Е. Гмурмана. Закачайте, кто ещё не закачал – там вообще много полезного ;-) И обязательно научитесь пользовать таблицей (прямо сейчас!) – подходящей вычислительной техники всегда может не оказаться под рукой!

На заключительном этапе применим формулу :
– вероятность того, что при 400 бросках монеты орёл выпадет ровно 200 раз.

Как видите, полученный результат очень близок к точному значению , вычисленному по формуле Бернулли .

б) Найдём вероятность того, что в серии из 400 испытаний орёл выпадет ровно раз. Используем локальную теорему Лапласа. Раз, два, три – и готово:

Следующий пример, как многие догадались, посвящён деторождению – и это вам для самостоятельного решения :)

Вероятность рождения мальчика равна 0,52.

Найти вероятность того, что среди 100 новорожденных окажется ровно: а) 40 мальчиков, б) 50 мальчиков, в) 30 девочек.

Результаты округлить до 4 знаков после запятой.

…Интересно тут звучит словосочетание «независимые испытания» =) Кстати, реальная статистическая вероятность рождения мальчика во многих регионах мира колеблется в пределах от 0,51 до 0,52.

Примерный образец оформления задачи в конце урока.

Все заметили, что числа получаются достаточно малыми, и это не должно вводить в заблуждение – ведь речь идёт о вероятностях отдельно взятых, локальных значениях (отсюда и название теоремы). А таковых значений много, и, образно говоря, вероятности «должно хватить на всех». Правда, многие события будут практически невозможными .

Поясню вышесказанное на примере с монетами: в серии из четырёхсот испытаний орёл теоретически может выпасть от 0 до 400 раз, и данные события образуют полную группу :

Однако бОльшая часть этих значений представляет собой сущий мизер, так, например, вероятность того, что орёл выпадет 250 раз – уже одна десятимиллионная: . О значениях наподобие тактично умолчим =)

С другой стороны, не следует недооценивать и скромные результаты: если составляет всего около , то вероятность того, орёл выпадет, скажем, от 220 до 250 раз. будет весьма заметна.

Гораздо проще эти значения объединить. А объединение чего-либо, как вы знаете, называется интегрированием :

Интегральная теорема Лапласа

Если вероятность появления случайного события в каждом испытании постоянна, то вероятность того, что в испытаниях событие наступит не менее и не более раз(от до раз включительно). приближённо равна:

При этом количество испытаний, разумеется, тоже должно быть достаточно большими вероятность не слишком мала/велика (ориентировочно ). иначе приближение будет неважным либо плохим.

Функция называется функцией Лапласа . и её значения опять же сведены в стандартную таблицу (найдите и научитесь с ней работать!! ). Микрокалькулятор здесь не поможет, поскольку интеграл является неберущимся. Но вот в Экселе есть соответствующий функционал – используйте пункт 5расчётного макета .

На практике наиболее часто встречаются следующие значения:
– перепишите к себе в тетрадь.
Начиная с , можно считать, что , или, если записать строже:

Кроме того, функция Лапласа нечётна . , и данное свойство активно эксплуатируется в задачах, которые нас уже заждались:

Вероятность поражения стрелком мишени равна 0,7. Найти вероятность того, что при 100 выстрелах мишень будет поражена от 65 до 80 раз.

Я подобрал наиболее реалистичный пример, а то у меня тут нашлось несколько задач, в которых стрелок делает тысячи выстрелов =)

Решение. в данной задаче речь идёт о повторных независимых испытаниях . причём их количество достаточно велико. По условию требуется найти вероятность того, что мишень будет поражена не менее 65, но и не более 80 раз, а значит, нужно использовать интегральную теорему Лапласа: , где

Для удобства перепишем исходные данные в столбик:
– всего выстрелов;
– минимальное число попаданий;
– максимальное число попаданий;
– вероятность попадания в мишень при каждом выстреле;
– вероятность промаха при каждом выстреле.

, следовательно, теорема Лапласа даст хорошее приближение.

Вычислим значения аргументов:

Обращаю ваше внимание, что произведение вовсе не обязано нацело извлекаться из-под корня (как любят «подгонять» числа авторы задач) – без тени сомнения извлекаем корень и округляем результат; я привык оставлять 4 знака после запятой. А вот полученные значения обычно округляют до 2 знаков после запятой – эта традиция идёт из таблицы значений функции . где аргументы представлены именно в таком виде.

Используем указанную выше таблицу либо расчётный макет по терверу(пункт 5).
В качестве письменного комментария советую поставить следующую фразу: значения функции найдём по соответствующей таблице :

– вероятность того, что при 100 выстрелах мишень будет поражена от 65 до 80 раз.

Обязательно пользуемся нечётностью функции! На всякий случай распишу подробно:

Дело в том, что таблица значений функции содержит только положительные «икс», а мы работаем (по крайне мере, по «легенде») с таблицей!

Результат чаще всего округляют до 4 знаков после запятой (опять же в соответствии с форматом таблицы) .

Для самостоятельного решения:

В здании имеется 2500 ламп, вероятность включения каждой из них в вечернее время равна 0,5. Найти вероятность того, что вечером будет включено не менее 1250 и не более 1275 ламп.

Примерный образец чистового оформления в конце урока.

Следует отметить, что рассматриваемые задачи очень часто встречаются в «обезличенном» виде, например:

Производится некоторый опыт, в котором случайное событие может появиться с вероятностью 0,5. Опыт повторяется в неизменных условиях 2500 раз. Определить вероятность того, что в 2500 опытах событие произойдет от 1250 до 1275 раз

И подобных формулировок выше крыши.

По причине трафаретности задач условие нередко стремятся завуалировать – это «единственный шанс» хоть как-то разнообразить и усложнить решение:

В институте обучается 1000 студентов. В столовой имеется 105 посадочных мест. Каждый студент отправляется в столовую на большой перемене с вероятностью 0,1. Какова вероятность того, что в обычный учебный день:

а) столовая будет заполнена не более чем на две трети;
б) посадочных мест на всех не хватит.

Решение. используем интегральную теорему Лапласа , где

В данной задаче:
– всего студентов в институте;
– вероятность того, что студент отправится в столовую на большой перемене;
– вероятность противоположного события.

а) Вычислим, сколько посадочных мест составляют две трети от общего количества: мест

Найдём вероятность того, что в обычный учебный день столовая будет заполнена не более чем на две трети. Что это значит? Это значит, что на большой перемене придут от 0 до 70 человек. То, что никто не придёт или придут всего несколько студентов – есть события практически невозможные . однако в целях применения интегральной теоремы Лапласа эти вероятности все равно следует учесть. Таким образом:

Вычислим соответствующие аргументы:

В результате:

– вероятность того, что в обычный учебный день столовая будет заполнена не более чем на две трети.

Напоминание: при функцию Лапласа считаем равной .

б) Событие «Посадочных мест на всех не хватит» состоит в том, что в столовую на большой перемене придут обедать от 106 до 1000 человек (главное, хорошо уплотнить =)). Понятно, что высокая посещаемость невероятна, но тем не менее: .

Таким образом, вероятность того, что посадочных мест на всех не хватит:

Используя теорему сложения вероятностей событий, образующих полную группу . легко найти вероятность того, что в обычный учебный день на большой перемене в столовой будут заняты от 71 до 105 посадочных мест:

Также хочу коснуться оговорки «в ОБЫЧНЫЙ учебный день». Я специально добавил её к условию. Зачем? Она обеспечивает относительную неизменность ситуации. После праздников, например, в институт может прийти значительно меньше студентов, а на «День открытых дверей» нагрянуть голодная делегация =) То есть, в «необычный» день найденные вероятности по разным причинам могут существенно отличаться.

Заключительный пример для самостоятельного решения:

В обычный учебный день вероятность присутствия студента на лекции равна 0,8. Найти вероятность того, что из 100 студентов на лекции будут присутствовать:

а) 85-90%;
б) половина студентов;
в) не менее 72 студентов.

Постарайтесь не пропускать задание ;-) Краткое решение и ответ совсем близко.

Здесь, несмотря на оговорку, все равно не всё гладко: известно, что процент прогулов у юношей заметно отличается от аналогичного показателя у девушек, поэтому усреднённая оценка несколько некорректна. Задачу следовало бы сформулировать для кадетского корпуса либо Института благородных девиц =) Неожиданно, но юноши, скорее всего, посещают занятия лучше =)

Вспомнилась, к слову, коварная задачка: вероятно ли встретить на улице 100 мужчин подряд? Запросто! Если навстречу прошагает рота солдат. Многие думают, что шансы встретить мужчину либо женщину составляют примерно 50 на 50 и даже встреча подряд десяти прохожих одного пола крайне маловероятна. Но почти все забывают об условии равновозможности событий . Так, например, если за углом находится отделение полиции или швейная фабрика, то встреча мужчины/женщины будет совсем не равновозможной.

Подобные моменты нужно обязательно учитывать в своих статистических исследованиях. которые бывают у каждого из нас хотя бы на бытовом уровне =)

Решения и ответы :

Задача 2: Решение : по условию:
– всего новорожденных;
– вероятность рождения мальчика. Тогда:
– вероятность рождения девочки.
Используем локальную теорему Лапласа :
а)

Примечание: «икс» обычно округляют до 2 знаков после запятой.


Примечание: на практике часто пользуются стандартной таблицей значений функции , где даны только положительные значения «икс», поэтому при оформлении решения «минус» всегда лучше «убрать» (ввиду чётности функции).
– вероятность того, что среди 100 новорожденных будет ровно 40 мальчиков.

б)

– вероятность того, что среди 100 новорожденных будет ровно 50 мальчиков.

в)

– вероятность того, что среди 100 новорожденных будет ровно 30 девочек.

Задача 4: Решение. используем интегральную теорему Лапласа: , где:
, – функция Лапласа.
В данной задаче:
– всего ламп в здании;
– минимальное количество одновременно включенных ламп;
– максимальное количество одновременно включенных ламп;
– вероятность того, что лампа включена (для каждой из ламп);
– вероятность противоположного события.
Вычислим аргументы:

Значения функции найдём по соответствующей таблице:
– вероятность того, что вечером будет включено не менее 1250 и не более 1275 ламп.
Ответ:

Задача 6: Решение. в данной задаче:
– всего студентов;
– вероятность присутствия студента на лекции;
– вероятность отсутствия студента на лекции.

а) Найдём количество студентов, соответствующее 85 и 90 процентам:

Для контроля дальнейших вычислений используйте полностью автоматизированную программу >>> Это бонус для самых терпеливых читателей!
Используем интегральную теорему Лапласа:
;
В данном случае:

Таким образом:
– вероятность того, что на лекции будут присутствовать 85-90% от 100 студентов.

б) Используем локальную теорему Лапласа:
, где
В данном случае

– вероятность того, что на лекции будет присутствовать половина студентов (событие практически невозможно).

в) Используем интегральную теорему Лапласа: .

В результате: – вероятность того, что на лекции будут присутствовать не менее 72 студентов.

Автор: Емелин Александр

(Переход на главную страницу)



как пользоваться таблицей муавра лапласа:Локальная и интегральная теоремы Лапласа Данная статья является естественным продолжением урока о независимых испытаниях . на котором мы познакомились с формулой Бернулли и отработали

как пользоваться таблицей муавра лапласа